
Communication Support
for

Global Address Space Programming Models

Jarek Nieplocha
Pacific Northwest National Laboratory

Outline

• Background
• Underlying Concepts
• DoE MICS Project on Programming Models for Scalable

Parallel Computing

• Specific programming models
• Run-time System efforts
• Relation to Blue Gene/L system

Global Address Space
and Remote Memory Access

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

collection of address spaces
of processes in a parallel job
global address: (address, PID)

Examples: Cray T3E, Fujitsu VPP5000

Point-to-point Message Passing

P1P0
receive send

rather than

P1P0
put

Remote Memory Access

associated communication paradigm

GAS Models in PModels Project
www.pmodels.org

• Global Address Space is a concept shared among
several models in the PModels project
• Language Based Programming Models

• Co-Array Fortran (Rice, U. Minnesota)
• UPC (LBNL, Berkeley)
• Titanium (Berkeley)

• Library Based Programming Models
• MPI-2 1-sided (Argonne)
• SHMEM (Ames Lab)
• Global Arrays (PNNL)

CoArray Fortran

• Relatively simple extensions (comparing to HPF) to Fortran 90
• SPMD process images

• number of images fixed during execution
• images operate asynchronously

• Both private and shared data
• allows programmer manage data locality explicitly
real a(20,20) private: a 20x20 array in each image
real a(20,20) [*] shared: a 20x20 array in each image

• Simple one-sided shared memory communication
x(:,j:j+2) = a(r,:) [p:p+2] copy 3 rows from p:p+2 into 3 ocal columns

• Flexible synchronization
sync_team(team [,wait])

• team a vector of process ids to synchronize with
• wait a vector of processes to wait for (a subset of team)

• Pointers and (possibly asymmetric) dynamic allocation
• Parallel I/O (Panda/HDF efforts at UIUC & NCSA)

UPC
• Shared array elements are spread across the threads

shared int x[THREADS] one element per thread
shared int y[3][THREADS] 3 elements per thread
shared int z[3*THREADS] 3 elements per thread, cyclic
Assume THREADS=4, elements with affinity to processor 0 are marked

x

y blocked

z cyclic

This is really
a 2D array

• Pointers may point to shared or private variables
shared int *sp; pointer to an integer residing in the shared memory

• Locks

• Strict and relaxed memory consistency models

SHMEM

• Introduced on the Cray T3D
• put, get, atomic swap, collectives

• Memory addressability
• symmetric objects
• stack, heap allocation on the T3D
• Cray memory allocation routine shmalloc

• Characteristics
• ordered in the original version on the T3D

• out-of-order on the T3E due to adaptive routing

• simple progress rules
• simpler than MPI-2 1-sided, less synchronization

• Portable implementation from Ames - GPSHMEM

P1P0

shmem_put(a,b,n,0)

Symmetric Object

a
a b

Global Arrays

• shared memory model in
context of distributed arrays

• dual view of data
• shared
• distributed

• data locality control
• used in multiple areas

• popular in parallel computational
chemistry codes

single, shared data structure/ global indexing
e.g., A(4,3) rather than buf(7) on task 2

physically distributed data

Global Array Model of Computations
(motivated by NUMA hardware)

compute/update

local memorylocal memory

Shared Object

copy to local m
em

ory

1-sided
communication

get

Shared Object

co
py

 to
 sh

ar
ed

 o
bj

ec
t

local memory

1-sided
communication

put

PModels Run-Time System Activities

• Communication support critical
• Need performance, scalability, and portability
• Low latency RMA communication

• e.g., put,get, locks, atomic read-modify-write
• nonblocking API for overlapping communication with data movement

for latency hiding
• both small message and bulk operations important

• Collective operations
• barriers, reduce, broadcast

• Run-time efforts represented by
• GASNet (LBNL)
• ARMCI (PNNL, OSU)

GASnet

• LBNL system for UPC
• Aims for a wide portability
• 2-Level architecture to ease implementation
• Core API

– Based heavily on Active Messages
– Implemented directly on each platform
– Most basic required primitives, as narrow and general as possible

• Extended API
– Wider interface that includes more complicated operations
– Reference implementation of extended API in terms of the core API
– Implementors can choose to directly implement any subset for

performance - leverage hardware support for higher-level operations

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware

ARMCI
Aggregate Remote Memory Copy Interface

§ Portable and low-level API used by
§ GPSHMEM, CoArray Fortran, Global Arrays

§ Broad set of functionality
§ put, get, accumulate (also with noncontiguous interfaces)

§ atomic read-modify-write, mutexes and locks

§ collective operations

§ Characteristics
§ simple progress rules, operations ordered w.r.t. target (ease of use)

§ does not assume any particular implementation model (e.g., AM)

§ focus on block data rather than single word transfers

§ High performance delivered on a wide range of platforms

§ Multi-protocol and multi-method implementations

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

direct remote memory access

Integrated Run-Time System

• Goal to build run-time system used accross PModels project
• generality and flexibility
• portability and performance

• Combine best features of ARMCI and GasNet, for example
• AM-MPI developed by GasNet should work with ARMCI thus

providing the Active Message API (polling only)
• define extended set of memcopy interfaces in UPC able to use

highly tuned ARMCI strided and vector interfaces
• add nonblocking APIs defined by GasNet to ARMCI

Portability Challenge

programm
able NIC

YNYNLtdYNYYQuadrics

thread safeNYYYNNNOptYVIA

YYYYNYNYYFujitsu
MPlib

thread safeNYYNNNNNYMyricom
GM

Y

Y

N

N

ordering

Y

N

Y

Y

“regular”
memory

Y

Y*

Y

N

nblock
API

Y

Ltd

Y*

N*

ncontig
API

N

N

N

N*

locks

N

Ltd

Y

Ltd

RMW

thread
safe

NNNTCP/IP

NYYHitachi
RDMA

thread
safe, AM

NYYIBM
LAPI

NYYCray
SHMEM

extrasaccum
ulate

getput

Achieving Portability

native vendor protocols OS

functionality
matches vendor
APIs

missing

client-server, AMs

Client-Server Approach

• Used to implement missing functionality
• conversion of memory requirements

• e.g. dynamic memory registration

• get on top of put

• Architecture
• Extra thread on each SMP node used as server
• Blocked when no requests available

• Polling available as a configuration option if
extra CPU power available

• Interrupt/demand driven operation
• usually adds extra cost

• AM handler like approach but no full AM API

user process
(client)

extra thread
(server)

ne
tw

or
k

Scalability and Performance of RMA

• In principle RMA model is highly scalable
• given good h/w support e.g., Cray T3E
• otherwise might be limited by a s/w implementation

• conversion of h/w, OS, and programming model requirements

• Depend on the underlying network capabilities
• reliability (user or h/w/firmware?)
• APIs and protocols - native RMA or other paradigm?
• memory access requirements

• registering might be required

• flow control & buffer managment (e.g., VIA vs GM)

• We want the network h/w handle as much as possible
• Design of complex NIC can be costly!
• Traditionally IBM SP designs did not favor low latency RMA

P

P

O(P) buffers under GM

O(P2) buffers under VIA

Relation To Blue Gene/L
• Interested in porting GAS models to the machine
• Advantages of GAS Models

• complementary approach to MPI
• no embedded synchronization
• better suited for irregular applications and data access patterns
• scalable implementation could be simpler

– no message queues management, matching sends with receives
– movement of data between two memory locations

• shared memory style access to data

• Challenges
• dealing with h/w faults - none of the GAS models supports it
• underlying network protocols should be RMA aware for best

performance
• building RMA on top of message passing compromises performance

Final Thoughts

• GAS Models could offer an alternative to MPI on BG/L
• we don't know which model would work best

• implementation might be a limiting factor

• good run-time support critical for performance and scalability
• opportunities for using second processor

• Need to engage the IBM team to derive an efficient implementation of
the PModels run time
• network protocols and OS issues
• performance characteristics and resource utilization

• Some research problems are difficult and span multiple s/w layers e.g.,
fault tolerance
• programming model vs application vs OS support
• as a minimum run-time system must recognize faults and provide data up to

programming model

